
January, 2006

Querying Hierarchical Data

Learn how to get the results you need without storing anything
extra

By Tamar E. Granor, Technical Editor

Have you ever tried modeling the organization chart for a business?

Each employee (except, of course, the head honcho) reports to
someone above himself or herself in the hierarchy, but everyone is an

employee. How can you represent such a situation in your database?

How about a bill of materials, where each item may be built out of
other items? For example, a bracket assembly might be a bracket and

the necessary hardware and a shelf assembly might be a shelf, and
two bracket assemblies. How do you represent this situation in a

database?

There are two approaches to dealing with this kind of data. In the first

approach, the database stores a pointer from a record to its immediate
parent, but no additional information about the record's position in the

hierarchy. That makes it easy to add records and update them, but
poses challenges for reporting.

With the second strategy, additional information about the hierarchy is
stored for each record. This simplifies reporting, since you can look at

a single record and know its heritage, but makes the task of creating
and maintaining records more complicated.

This article looks at the first approach and shows you how to extract

the data you need for reporting. For a discussion of the second
approach, check out http://www.sqlteam.com/item.asp?ItemID=8866.

Modeling an Organization Chart

The simple storage model asks each record to keep track of its parent

(or parents) in the hierarchy. For example, consider an Employee
table, with a field pointing to the employee's supervisor:

Field Name Type Width
IID Integer (AutoInc) 4
CFIRST Character 15
CLAST Character 20
ISUPERVISO Integer 4

http://www.sqlteam.com/item.asp?ItemID=8866

Here, iID is the primary key for the employee and iSuperviso is a

foreign key to the employee's supervisor. iSuperviso points back into
the Employee table and is null for the big boss. You'll find a sample

Employee table with this structure on this month's Professional
Resource CD.

What are the questions we might reasonably ask about the
organizational chart?

 Who is each employee's (or a specific employee's) immediate
supervisor?

 Who does a given employee supervise?
 Who's the boss? That is, who is the ultimate supervisor?

 Which employees are supervisor? Which are not?
 What is the chain of supervision from one employee to the top?

You can probably think of a few others, but this list addresses the key

problems.

The first two questions can be answered with a single query each. Both
involve a self-join, a query where a table is joined to itself. Doing that

requires the use of a local alias, a name assigned to the table for the
length of the query.

Listing 1 (EmpWithSup.PRG on this month's PRD) shows how to get
the list of employees and their immediate supervisors; Figure 1 shows

the first few records of the results. The query uses the Employee table
twice. The first instance uses the local alias Emp, while the second has

the local alias Sup. The query also uses AS to assign unambiguous
names to the fields of the result.

Listing 1. One level is easy—Looking one level up in a hierarchy requires a self-join,
but is not difficult.

SELECT Emp.cFirst AS cEmpFirst, Emp.cLast AS cEmpLast,
 Emp.iSupervisor, ;
 Sup.cFirst AS cSupFirst, Sup.cLast AS cSupLast;
 FROM Employee Emp ;
 LEFT JOIN Employee AS Sup ;
 ON Emp.iSuperviso = Sup.iID ;
 ORDER BY cSupLast, cSupFirst, cEmpLast, cEmpFirst ;
 INTO CURSOR EmpWithSup

Figure 1. Employees and their supervisors—The query in Listing 1 matches each
employee with his or her supervisor.

The same query actually answers the second question—who does a

given employee supervise? If you're really interested in only a single

supervisor, simply add a filter to the WHERE clause restricting the
results, as in Listing 2 (OneSupervisor.PRG on this month's PRD).

Listing 2. Narrow it down—To see only those who report to a given supervisor,
simply add a filter.

SELECT Emp.cFirst AS cEmpFirst, Emp.cLast AS cEmpLast, ;
 Emp.iSuperviso, ;
 Sup.cFirst AS cSupFirst, Sup.cLast AS cSupLast;
 FROM Employee Emp ;
 LEFT JOIN Employee AS Sup ;
 ON Emp.iSuperviso = Sup.iID ;
 WHERE Sup.cFirst = "Debbie" AND Sup.cLast = "Rodriguez" ;
 ORDER BY cSupLast, cSupFirst, cEmpLast, cEmpFirst ;
 INTO CURSOR EmpWithSup

Figuring out who's at the top of the hierarchy is also simple. It doesn't

require any joins at all; you just need to find the employee who has no

supervisor, as Listing 3 (HeadHoncho.PRG on this month's PRD)

shows.

Listing 3. Who's in charge?—Finding the top boss is straightforward.

SELECT cFirst, cLast ;
 FROM Employee ;
 WHERE EMPTY(iSuperviso) ;
 INTO CURSOR HeadHoncho

The next pair of questions seeks to divide the employees into those

who are supervisors and those who are not. The solutions to these two
problems turn out to be very similar. Supervisors are all those who are

referenced by at least one other employee's record. Listing 4
(Supervisors.PRG on this month's PRD) shows how to find their names.

Listing 4. Finding supervisor—Any employee referenced in another employee's
iSuperviso field is a supervisor.

SELECT cFirst, cLast ;
 FROM Employee ;
 WHERE iID IN ;
 (SELECT iSuperviso FROM Employee) ;
 ORDER BY cLast, cFirst ;
 INTO CURSOR AllSupervisors

The subquery here extracts the supervisor ID from each employee
record. The main query then finds the records for those individuals.

While you can use a join rather than a subquery in this case, you then
end up with duplicate records (one for each employee under a given

supervisor); in that case, you need to use DISTINCT to cut the list
down to one record per supervisor.

To find those who aren't supervisors, add NOT to the previous query.
In this case, you can't replace the subquery with a join. Listing 5

(WorkerBees.PRG on this month's PRD) shows the solution.

Listing 5. Worker bees—To find the employees who don't supervise anyone, throw
out the list of supervisors and keep the rest of the records.

SELECT cFirst, cLast ;
 FROM Employee ;
 WHERE iID NOT IN ;
 (SELECT iSuperviso FROM Employee) ;
 ORDER BY cLast, cFirst ;
 INTO CURSOR WorkerBees

The last question on the list can't be answered with just a query,

unless you know how many levels there are in the hierarchy. Tracing

from a given employee to the top of the hierarchy calls for some

procedural code. Listing 6 (EmpHierarchy.PRG on this month's PRD)
shows a solution that combines procedural code with a query and

works in all versions of VFP.

Listing 6. Tracing the hierarchy—One way to work back from a single employee to
the big boss combines a query with procedural code.

LPARAMETERS iEmpID

LOCAL iCurrentID

CREATE CURSOR EmpHierarchy ;
 (cFirst C(15), cLast C(20))

iCurrentID = iEmpID
DO WHILE NOT EMPTY(iCurrentID)

 SELECT cFirst, cLast, iSuperviso ;
 FROM Employee ;
 WHERE iID = m.iCurrentID ;
 INTO CURSOR NextEmp NOFILTER

 INSERT INTO EmpHierarchy ;
 VALUES (NextEmp.cFirst, NextEmp.cLast)

 iCurrentID = NextEmp.iSuperviso
ENDDO

USE IN NextEmp
USE IN Employee
SELECT EmpHierarchy

The code receives the employee to start with as a parameter. Each

time through the loop, you find the supervisor for the current
employee and add it to the result. Then, focus on that supervisor for

the next pass through the loop. Continue until you reach the top of the

chain.

Listing 7 (EmpHierarchyProc.PRG on this month's PRD) shows another

approach that replaces the query with SEEK. This version is 5-10%
faster than the previous version. The price you pay is having to

explicitly open the Employee table.

Listing 7. Tracing the hierarchy—Another approach to tracing the hierarchy uses
the Xbase SEEK instead of a query.

LPARAMETERS iEmpID

LOCAL iCurrentID

CREATE CURSOR EmpHierarchy ;

 (cFirst C(15), cLast C(20))

USE Employee IN 0 ORDER iID

iCurrentID = iEmpID
DO WHILE NOT EMPTY(iCurrentID)

 SEEK iCurrentID IN Employee

 INSERT INTO EmpHierarchy ;
 VALUES (Employee.cFirst, Employee.cLast)

 iCurrentID = Employee.iSuperviso
ENDDO

USE IN Employee
SELECT EmpHierarchy

In VFP 8 and later, there's another way to do this. The INSERT
command accepts a query instead of a list of values, so you can

combine the SELECT and INSERT of the first version into a single
command. Listing 8 (EmpHierarchy2.PRG on this month's PRD) shows

this approach, which is very slightly (less than 1%) slower than the
version in Listing 6.

Listing 8. Tracing the hierarchy—In VFP 8 and 9, you can combine INSERT and
SELECT to simplify the code.

LPARAMETERS iEmpID

LOCAL iCurrentID

CREATE CURSOR EmpHierarchy ;
 (cFirst C(15), cLast C(20), iSuperviso I)

iCurrentID = iEmpID
DO WHILE NOT EMPTY(iCurrentID)

 INSERT INTO EmpHierarchy ;
 SELECT cFirst, cLast, iSuperviso ;
 FROM Employee ;
 WHERE iID = m.iCurrentID ;

 iCurrentID = EmpHierarchy.iSuperviso
ENDDO

USE IN Employee
SELECT EmpHierarchy

The Bill of Materials Problem

With an organization chart, there's a single hierarchy. Each employee
has a single supervisor. The bill of materials problem is more complex.

Here, there are some basic materials (such as shelves, nuts, bolts,
brackets, etc.) that can be combined in various ways to create more

complex materials (bracket assemblies comprising a bracket and the
necessary hardware, for example) and those items can themselves be

used to create even more complex materials (such as shelf

assemblies).

Modeling this structure requires more than one table. One table

(Items, in Figure 2) lists all the items available, while another
(Contents) links items to the other items used to build them. Each

record in Contents has two foreign keys to the Items table, one for the
item being built (iContID), and one for the contained item (iItemID). It

also has a field to indicate how many of the specified part are needed.
For example, for a bracket assembly, the Contents table might have

two records, one for the bracket and one for the screws used to attach
the bracket. Figure 3 and Figure 4 show the Items and Contents

tables, respectively. (They're also included on this month's PRD and in
the downloads for this article.)

Figure 2. Representing a bill of materials—You normally use two tables to represent
a bill of materials situation, where items can be constructed out of other items.

Figure 3. Items available—The Items table lists all the parts that can be used and
sold.

Figure 4. Combining items—The Contents table shows which items go into building
other items.

There are basically two questions to ask about bill of materials data:

 What parts are needed to build a particular item?

 What items use a particular part?

It turns out that each of the questions has a couple of variants, as
well. The first question is probably the most common. The answer lets

you create the part list that can be used to assemble the item.

Building the part list requires you to climb down the hierarchy. At each

stage, you have to check the items you find to see whether they
contain additional items. Because you may find several items at each

stage, you need a way to keep track of the items yet to be checked,

such as storing them in a cursor.

As you build the list, you may or may not want to include assemblies

in the result. For example, when building the part list for a shelf
assembly, you may want to show that there are two bracket

assemblies and then show the parts contained in those assemblies.
Alternatively, you may simply want to show the parts and leave out

any reference to the bracket assemblies.

The code in Listing 9 (PartList.PRG on this month's PRD) builds the

part list, optionally removing the assemblies. In addition, it sorts the
results so that if the assemblies are listed, each is followed by the

items used to build the assembly. That makes reporting on the results
easier. Note also that the code figures out the quantity needed for

each item, using the quantity of the part in a given assembly and the
quantity of that assembly.

Listing 9. Building a part list—You need to drill down checking each item you find to
see whether it’s composed of additional parts.

LPARAMETERS iItemID, lDeleteAssemblies

LOCAL iCurrentID, nCurPart, lDeleteCurRec

iCurrentID = m.iItemID

SELECT iItemID, cName, nQuantity, ;
 m.iCurrentID AS iAssemblyID, 000 AS nSortOrder ;
 FROM Contents ;
 JOIN Items ;
 ON Contents.iItemID = Items.iID ;
 WHERE Contents.iContID = m.iCurrentID ;
 INTO CURSOR Parts READWRITE

nSortOrder = 1

SCAN

 nCurPart = RECNO("Parts")
 iCurrentID = Parts.iItemID
 nHowMany = Parts.nQuantity
 IF nSortOrder = 0
 REPLACE nSortOrder WITH m.nSortOrder
 ENDIF

 INSERT INTO Parts ;
 SELECT iItemID, cName, m.nHowMany * nQuantity, ;
 m.iCurrentID, m.nSortOrder + 1 ;
 FROM Contents ;
 JOIN Items ;

 ON Contents.iItemID = Items.iID ;
 WHERE Contents.iContID = m.iCurrentID
 lDeleteCurRec = lDeleteAssemblies AND (_TALLY > 0)
 m.nSortOrder = m.nSortOrder + _TALLY + 1

 GO (nCurPart) IN Parts
 IF lDeleteCurRec
 DELETE NEXT 1
 ENDIF

ENDSCAN

SELECT * FROM Parts ;
 INTO CURSOR Parts ;
 ORDER BY nSortOrder

The other interesting question is which items use a given part, that is,
building a list of products that include a specified part. You might do

this when it becomes difficult to get a particular part, so that you can
mark certain items as unavailable or look for substitutes.

As with the organizational chart, if you only want to go up one level,
this is a simple problem and the necessary query is analogous to

Listing 1. Listing 10 (UsedDirectly.PRG on this month's PRD) shows
how to find this information for all items.

Listing 10. Who uses what?—A single query can build a list showing direct use of
each item.

SELECT Items.iID, Items.cName, iContID, Assem.cName ;
 FROM Items ;
 JOIN Contents ;
 ON Items.iID = Contents.iItemID ;
 JOIN Items Assem ;
 ON Contents.iContID = Assem.iID ;
 ORDER BY Items.iID ;
 INTO CURSOR UsedDirectly

The harder problem is tracing all the way back to the top of the
hierarchy for a given item. There are two variations here, finding only

final products that use the specified item, and finding all items that

use the item. The big difference between the two is whether you keep
all the records you find as you climb the hierarchy.

Listing 11 (UsesItem.PRG on this month's PRD) shows code to build a
list of only the final products. It uses two cursors, one to hold the list

of items to be checked, and one to hold the results.

Listing 11. Products using an item—To build the list of final products that use a
particular part, you have to trace up the hierarchy.

LPARAMETERS iItemID

LOCAL iCurrentID, nRecNo

CREATE CURSOR UsesItem (iItemID I, cName C(25))

iCurrentID = m.iItemID

SELECT iContID ;
 FROM Contents ;
 WHERE iItemID = m.iCurrentID ;
 INTO CURSOR CheckItems READWRITE

SCAN
 iCurrentID = CheckItems.iContID
 nRecNo = RECNO("CheckItems")

 * Look for items containing the current item
 INSERT INTO CheckItems ;
 SELECT iContID ;
 FROM Contents ;
 WHERE iItemID = m.iCurrentID
 GO nRecNo IN CheckItems

 IF _Tally = 0
 * This is the top of the chain
 INSERT INTO UsesItem ;
 SELECT iID, cName ;
 FROM Items ;
 WHERE iID = m.iCurrentID
 ENDIF

ENDSCAN

SELECT UsesItem

If you want to see all the items that use a particular part, not just
those that aren't contained in any other items, you can use a single

cursor to hold both the items yet to check and the results. The code in
Listing 12 (ContainerList.PRG on this month's PRD) does so, being

careful to keep track of the record pointer position. The code here is
surprisingly similar to the code in Listing 9 that traces the hierarchy

downwards.

Listing 12. All items using an item—Creating a list of all items that use a particular
item, whether those items are used in other items or not, is similar to finding all the
items used in a particular product.

LPARAMETERS iItemID

LOCAL iCurrentID

iCurrentID = m.iItemID

SELECT iContID as iItemID, cName ;
 FROM Contents ;
 JOIN Items ;
 ON Contents.iContID = Items.iID ;
 WHERE Contents.iItemID = m.iCurrentID ;
 INTO CURSOR Containers READWRITE

SCAN

 nCurPart = RECNO("Containers")
 iCurrentID = Containers.iItemID

 INSERT INTO Containers ;
 SELECT iContID, cName ;
 FROM Contents ;
 JOIN Items ;
 ON Contents.iContID = Items.iID ;
 WHERE Contents.iItemID = m.iCurrentID

 GO (nCurPart) IN Containers

ENDSCAN

The Bottom Line

The world is full of hierarchies, both simple and complex. The
approach demonstrated in this article is appropriate in situations

where the data in the hierarchy is likely to change and where tracing
the hierarchy quickly isn't a high priority. For more static hierarchies

where quick access to an item's lineage is important, consider storing
that information with each record.

